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Abstract. Boundary critical phenomena are studied in the three-state Potts model in two
dimensions using conformal field theory, duality and renormalization group methods. A
presumably complete set of boundary conditions is obtained using both fusion and orbifold
methods. Besides the previously known free, fixed and mixed boundary conditions a new one
is obtained. This illustrates the necessity of considering fusion with operators that do not occur
in the bulk spectrum, to obtain all boundary conditions. It is shown that this new boundary
condition is dual to the mixed ones. The phase diagram for the quantum chain version of the
Potts model is analysed using duality and renormalization group arguments.

1. Introduction

Recently there has been considerable interest in the behaviour of two-dimensional systems
with boundaries, in the context of string theory, classical statistical mechanics and quantum
impurity problems. Exact results on the critical behaviour of these systems have been
obtained using boundary conformal field theory (CFT) [1, 2]. More complete exact results
on universal crossover functions have also been obtained using exactS-matrix methods
[3]. One of the simplest examples of such a system is provided by the three-state Potts
model. It can be related, via conformal embeddings, [4] to quantum Brownian motion on a
hexagonal lattice [5] and to tunnelling in quantum wires [6]. The classical Hamiltonian for
this model can be written by introducing an angular variable at each site of a square lattice,
θi , restricted to take only three values: 0,±2π/3

βH = −J
∑
〈i,j〉

cos(θi − θj ). (1.1)

When the model is at its critical coupling,Jc, various universality classes of boundary
critical phenomena are possible. These include free boundary conditions (b.c.’s) and (three
different) fixed b.c.’s,θi = 0 (or 2π/3 or −2π/3), for i on the boundary. In addition, it
was argued [7] that there are also three ‘mixed’ b.c.’s in which one of the three spin states
is forbidden at the boundary so that the Potts spins on the boundary fluctuate between two
of the states (for example, between 2π/3 and−2π/3).

In the following it will also be convenient to consider the standard quantum chain
representation. The Hamiltonian is written in terms of unitary matrices,Mi andRi defined
at each site.

M =
( 0 1 0

0 0 1
1 0 0

)
R =

( e2π i/3 0 0
0 e4π i/3 0
0 0 1

)
. (1.2)
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In fact, these two matrices can be transformed into each other:

R = U †MU. (1.3)

This is related to the duality symmetry. The Hamiltonian is

H = −
∑
i

[(Mi +M†i )+ (R†i Ri−1+ R†i−1Ri)]. (1.4)

Note that the second term corresponds to the classical Potts model with the three different
states corresponding to the vectors (1,0,0), (0,1,0) and (0,0,1). The first term flips the spin on
each site between the three states. It is like a transverse field in the Ising model. The model
hasZ3 symmetry which interchanges the three basis vectors. Decreasing the strength of the
transverse field term puts the system in the ordered phase; increasing it gives the disordered
phase. As written, these terms exactly balance; the model is at its critical point. One way
of seeing this is to observe that, for this value of the coupling constant, the Hamiltonian
maps onto itself under the duality transformation:

R′i+1/2 ≡
i∏

j=0

Mj

M ′i+1/2 ≡ R†i+1Ri.

(1.5)

The six fixed and mixed b.c.’s were represented in terms of boundary states [1].
These are defined by a modular transformation of the partition function on a cylinder of
circumferenceβ and lengthl with b.c.’s A and B at the two ends:

ZAB = tr exp[−βHl
AB ] = 〈A| exp[−lHβ

P ]|B〉. (1.6)

Here,Hl
AB is the Hamiltonian on a strip of lengthl with b.c.’sA andB at the two ends.

H
β

P is the Hamiltonian on a circle of circumferenceβ. ZAB may be expanded in characters
of the (chiral) Virasoro algebra:

ZAB =
∑
k

nkABχk(q). (1.7)

Hereq is the modular parameter,q ≡ exp[−πβ/l], k labels (chiral) conformal towers,χk
are the characters andnkAB are non-negative integers. The boundary states may be expanded
in Ishibashi states, constructed out of each conformal tower:

|A〉 =
∑
k

|k〉〈k, 0|A〉. (1.8)

One way of generating a complete set of boundary states (and hence b.c.’s) from an
appropriately chosen reference state is by fusion. Beginning with the reference boundary
state|0̃〉, one constructs a set of boundary states,|j̃〉 associated with the conformal towers,
j . Its matrix elements are given by:

〈i, 0|j̃〉 = Sij

Si0
〈i, 0|0̃〉 (1.9)

whereSij is the modularS-matrix. This construction gives physically sensible multiplicities,
niAB ; that is they are non-negative integers obeyingn0

AA = 1. This construction relies on
the Verlinde formula [8] which relates the modularS-matrix to the fusion rule coefficients.

A subtlety arises in the Potts model connected with an extendedW -algebra. While
there are 10 Virasoro conformal towers for central chargec = 4

5, labelled by pairs of
integers,(n,m) with 1 6 n 6 4 andm 6 n, only four larger conformal towers, which
are combinations of these ones, occur in the bulk spectrum or with certain pairs of b.c.’s.
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Furthermore, two of these conformal towers occur twice in the bulk spectrum corresponding
to pairs of operators of opposite charge (±1) with respect to theZ3 symmetry of the Potts
model. (In general, operators can have chargeq = 0, 1 or −1, transforming underZ3

transformations as:

O→ eiqθO (1.10)

for θ = 0, ±2π/3.) These operators areσ , σ † of dimension 1
15 andψ , ψ† of dimension2

3.
The Potts model also contains an energy operator,ε of dimension2

5 as well as the identity
operator,I . TheseW -characters are given by:

χI = χ11+ χ41 χε = χ21+ χ31

χσ = χσ † = χ33 χψ = χψ† = χ43
(1.11)

where χnm is the Virasoro character for the (n,m) conformal tower. The Potts model
has a fusion algebra which closes on these operators. The modular transform of these
W -characters can be expressed entirely in terms ofW -characters and the corresponding
S-matrix and fusion rule coefficients obey the Verlinde formula. Ambiguities in theS-
matrix and fusion rules associated with having operators of equal dimension are removed
by requiring consistency with theZ3 symmetry. Cardy constructed a set of boundary states
which were linear combinations of the Ishibashi states constructed using the extendedW -
algebra. The reference state for the fusion process, in this construction, is the boundary
state,|Ĩ 〉, obeyingZĨĨ = χI . It was argued in [1] that it corresponds to one of the fixed
b.c.’s, the other two being|ψ̃〉 and |ψ̃†〉. Similarly |ε̃〉, |σ̃ 〉 and |σ̃ †〉 correspond to the
three mixed b.c.’s. All partition functions involving these six b.c.’s can be expressed in
terms ofW characters. On the other hand, it was observed that partition functions that
combine free b.c.’s with fixed or mixed cannot be expressed in terms ofW characters and
the corresponding free boundary state was not determined.

Clearly the set of b.c.’s generated by fusion with the primary fields of the bulk Potts
spectrum (which are covariant with respect to theW -algebra) is not complete, since it does
not include the free b.c.’. In the next section we shall generate a presumably complete set of
boundary states including the one corresponding to free boundary conditions and one new
boundary state. We do this in two different ways; one method uses fusion and the other
uses an orbifold projection. In the final section we shall explore the physical significance
of this new boundary condition and the boundary renormalization group flow diagram. The
appendix contains a peripherally related result: a general proof that the ground-state entropy
alwaysincreasesunder fusion.

2. Boundary states

2.1. Fusion approach

In order to determine the ‘free’ boundary state and check for possible additional boundary
states (and conditions) we must work with the larger set of conformal towers not constrained
by theW -symmetry. The full modularS-matrix, in the space of all 10 Virasoro conformal
towers that can occur in ac = 4

5 minimal model, is given in table 1. The state|Ĩ 〉 may be
expanded in terms ofW -Ishibashi states as:

|Ĩ 〉 = N{|I 〉 + |ψ〉 + |ψ†〉 + λ[|ε〉 + |σ 〉 + |σ †〉]} (2.1)

where

N4 = 5−√5

30
λ2 = 1+√5

2
. (2.2)
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Table 1. The modularS-matrix for Virasoro characters (multiplied by 2/N2). Characters are
labelled by their Kac labels (n,m) (and by their highest weight).

11(0) 41(3) 21( 2
5) 31( 7

5) 43( 2
3) 33( 1

15) 44( 1
8) 42( 13

8 ) 22( 1
40) 32( 21

40)

11(0) 1 1 λ2 λ2 2 2λ2
√

3
√

3
√

3λ2
√

3λ2

41(3) 1 1 λ2 λ2 2 2λ2 −√3 −√3 −√3λ2 −√3λ2

21( 2
5) λ2 λ2 −1 −1 2λ2 −2 −√3λ2 −√3λ2

√
3

√
3

31( 7
5) λ2 λ2 −1 −1 2λ2 −2

√
3λ2

√
3λ2 −√3 −√3

43( 2
3) 2 2 2λ2 2λ2 −2 −2λ2 0 0 0 0

33( 1
15) 2λ2 2λ2 −2 −2 −2λ2 2 0 0 0 0

44( 1
8)

√
3 −√3 −√3λ2

√
3λ2 0 0 −√3

√
3

√
3λ2 −√3λ2

42( 13
8 )

√
3 −√3 −√3λ2

√
3λ2 0 0

√
3 −√3 −√3λ2

√
3λ2

22( 1
40)

√
3λ2 −√3λ2

√
3 −√3 0 0

√
3λ2 −√3λ2

√
3 −√3

32( 21
40)

√
3λ2 −√3λ2

√
3 −√3 0 0 −√3λ2

√
3λ2 −√3

√
3

TheW -Ishibashi states may be expanded in terms of Virasoro Ishibashi states as:

|I 〉 = |11〉 + |41〉 |ε〉 = |21〉 + |31〉. (2.3)

Now consider all new boundary states that can be obtained from|Ĩ 〉 by fusion with all
nine non-trivial Virasoro primaries using equation (1.9). Note that|Ĩ 〉 has zero amplitude
for the last four Ishibashi states in table 1: (4,4), (4,2), (2,2), (3,2). Also note that the
S
(1,1)
i = S(4,1)i for all i except for these last four states. The same statement holds forS

(2,1)
i

andS(3,1)i . Thus expanding the identity tower with respect to the W-algebra into (1,1) and
(4,1) does not lead to any additional boundary states. Neither does expanding theε tower
into (2,1) and (4,3). The (4,3) and (3,3) towers just give the states found previously since
these are themselvesW -towers. However, two additional boundary states can be obtained
by fusion with (4,4) and (2,2). On the other hand, fusion with (4,2) gives the same result
as (4,4) and (3,2) the same as (2,2) since all but the last four elements in the corresponding
rows in table 1 are equal. Thus, the fusion construction, beginning with theW -invariant
boundary state|Ĩ 〉 but considering the full set of Virasoro primaries leads to two additional
boundary states besides the six found previously by considering fusion withW primaries.

Note that we have performed a sort of hybrid construction. Instead we could have begun
with the reference boundary state|1̃1〉 such thatZ1̃1,1̃1 = χ11. In this case we would obtain
a larger set of boundary states. However, these states do not occur in the Potts model. One
reason is that|1̃1〉 is not consistent with|Ĩ 〉. This follows from the identity

|Ĩ 〉 = 1√
2

[|1̃1〉 + |4̃1〉]. (2.4)

The factor of 1/
√

2 in equation (2.4), necessary to avoid a two-fold degeneracy in
the spectrum ofZĨĨ , leads to an unphysical partition functionZĨ 1̃1, with non-integer
multiplicities. Another reason why this larger set of boundary states cannot occur in the
Potts model is because they contain Ishibashi states not derived from the bulk spectrum.
The eight boundary states discussed here presumably form a complete set of states which
are mutually consistent.

We note that the idea of obtaining new boundary states (and conditions) by fusion with
operators which do not occur in the bulk spectrum is also fundamental to the solution of
the non-Fermi liquid fixed points in the Kondo problem [9]. In that case, the reference
state was chosen to give a Fermi liquid b.c. The conformal embedding representing the free
fermions restricts the bulk spectrum to contain only certain products of operators from the
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spin, charge and flavour sectors. Fusion with pure spin operators, not contained in the bulk
spectrum, gives the infrared stable fixed points of both Fermi liquid and non-Fermi liquid
variety.

The two additional boundary states for the Potts model, found above, are:

|4̃4〉 = N
√

3[(|11〉 − |41〉)− λ(|21〉 − |31〉)]
|2̃2〉 = N

√
3[λ2(|11〉 − |41〉)+ λ−1(|21〉 − |31〉)].

(2.5)

The partition functions for any pair of b.c.’s can be determined from the boundary states
using:

〈i| exp−lHβ

P |j〉 = δijχi(q̃) (2.6)

whereq̃ = e−4πl/β . Finally we perform a modular transformation to theq-representation:

χi(q̃) =
∑
j

S
j

i χj (q). (2.7)

Alternatively, we may determine these partition functions from the fusion rule coefficients.
For a b.c.,̃i obtained by fusion with primary operator,Oi from |Ĩ 〉 and some other b.c.,̃j ,

nk
ĩj̃
=
∑
l

Nk
iln

l

Ĩ j̃
. (2.8)

HereNk
il is the number of times that the primary operatorOk occurs in the operator product

expansion ofOi with Ol . The needed fusion rule coefficients are given in table 2. These
are derived from the fusion rules of the tetracritical Ising model. For instance, to obtain the
first box in the table we use:

O44 · I = O44 · [O11+O41] → O44+O42. (2.9)

In cases where two dimension23 ( 1
15) operators occur in the operator product expansion

(OPE) we have interpreted them asψ + ψ† (σ + σ †). This calculation shows that all
partition functions involving|4̃4〉 and any of the fixed or mixed boundary states are the
same as those determined previously for the free b.c. Hence we conclude that|4̃4〉 is the
free boundary state. On the other hand,|2̃2〉 is a new boundary state corresponding to a
new b.c. whose physical interpretation is so far unclear. In the next section we investigate
the nature of this new boundary fixed point. First, however, we obtain this set of boundary
states by an interesting different method.

2.2. Orbifold approach

An alternative way of producing the complete set of boundary states for the Potts model is
based on obtaining the Potts model from an orbifold projection on the otherc = 4

5 conformal
field theory, the tetracritical Ising model, which has a diagonal bulk partition function [10].
A Z2 Ising charge,qi , can be assigned to each primary operator,Oi of the tetracritical
Ising model which is 0 for the first six entries in table 1 and one for the remaining four.

Table 2. Fusion rules for extended operator algebra. The fusion rules not shown are the standard
ones for the Potts model [1].

I or ψ or ψ† ε or σ or σ † O44+O42 O22+O32

O44 or O42 O44+O42 O22+O32 I + ψ + ψ† ε + σ + σ †
O22 or O32 O22+O32 O44+O42+O22+O32 ε + σ + σ † I + ψ + ψ† + ε + σ + σ †
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(This is a special case of a general construction for minimal models. Choosing a different
fundamental domain for Kac labels, (n,m) with

16 n 6 p′ − 1 16 m 6 p − 1 n+m = 0 mod 2 (2.10)

the charge is:

q = n+ 1. (2.11)

The c = 4
5 case corresponds top = 6, p′ = 5. This identification is consistent with the

Landau–Ginsburg description of the tetracritical Ising model [11]. The charge 1 operators
O22,O44 andO32 correspond toφ, : φ3 : and :φ5 : respectively. The charge 0 operatorsO33,
O21 andO43 correspond to :φ2 :, : φ4 : and :φ6 : respectively. The other three operators
other than the identity presumably could be identified with operators in the Landau–Ginsburg
description containing derivatives with the number of powers ofφ even forO41 andO31

and odd forO42.) The tetracritical Ising model has the diagonal bulk partition function:

ZTC ≡ Z++ =
10∑
i=1

|χi |2 (2.12)

where we number the conformal towers from 1 to 10 in the order in table 1. We may define
a twisted partition function:

Z+− ≡
10∑
i=1

(−1)qi |χi |2. (2.13)

We also define two other twisted partition functions by the modular transforms ofZ+−:

Z−+ ≡ SZ+− Z−− = T Z−+ (2.14)

whereS is the modular transformationτ → −1/τ and T is the modular transformation
τ → τ + 1. It can be shown that:

ZPotts= Zorb = ( 1
2)[Z++ + Z+− + Z−+ + Z−−]. (2.15)

We may think of the first two terms as representing the contribution of the untwisted sector of
the Hilbert space, with theZ2 invariant states projected out. The second two terms represent
the contribution of the twisted sector of the Hilbert space, corresponding to twisted b.c.’s
on the circle. (For the simpler case of thec = 1 bosonic orbifold the twisted b.c.’s are
simply φ(0) = −φ(l).) These contributions are explicitly:

( 1
2)[Z++ + Z+−] = |χ11|2+ |χ41|2+ |χ21|2+ |χ31|2+ |χ43|2+ |χ33|2
( 1

2)[Z−+ + Z−−] = χ̄11χ41+ χ̄41χ11+ χ̄21χ31+ χ̄31χ21+ |χ43|2+ |χ33|2.
(2.16)

There are two types of Ishibashi states which may be used to construct boundary states
in the orbifold model. We may take states from the untwisted sector, projecting out the
Z2 invariant parts or we may take states from the twisted sector. The first set of Ishibashi
states are labelled by the first six (Z2 even) conformal towers in table 1. We refer to
these untwisted|43〉 and|33〉 states as|ψu〉 and|σu〉 respectively. There are two additional
Ishibashi states from the twisted sector,|ψt 〉 and |σt 〉. We then define:

|ψ〉 ≡ (1/
√

2)[|ψu〉 + i|ψt 〉]
|ψ†〉 ≡ (1/

√
2)[|ψu〉 − i|ψt 〉]

(2.17)

and similarly for|σ 〉. One way of constructing consistent boundary states, using only the
untwisted sector, is by projecting out theZ2 even parts of the tetracritical Ising boundary
states. From inspecting table 1 we see that the various tetracritical Ising boundary states are
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mapped into each other by theZ2 transformation. We have ordered them in table 1 so that
successive pairs are interchanged, apart from|4̃3〉 and |3̃3〉 which are invariant. We expect
the conjugate pairs to correspond to various generalized spin-up and spin-down b.c.’s. We
may formally write the transformed states as:

(−1)Q̂|ATC〉. (2.18)

With each boundary state,|ATC〉, of the tetracritical Ising model, we may associate a
boundary state,|APotts〉 of the Potts model using:

〈i, 0|APotts〉 = 1+ (−1)qi√
2
〈i, 0|ATC〉. (2.19)

Formally we may write:

|APotts〉 = 1+ (−1)Q̂√
2
|ATC〉. (2.20)

It is necessary to divide by
√

2 in order that the identity operator appear only once in the
diagonal partition functions. In this way we obtain the following Potts boundary states from
each tetracritical Ising boundary state:

|1̃1TC〉 → |Ĩ 〉
|4̃1TC〉 → |Ĩ 〉
|2̃1TC〉 → |ε̃〉
|3̃1TC〉 → |ε̃〉
|4̃3TC〉 → |ψ̃〉 + |ψ̃†〉 (2.21)

|3̃3TC〉 → |σ̃ 〉 + |σ̃ †〉
|4̃4TC〉 → |4̃4〉
|4̃2TC〉 → |4̃4〉
|2̃2TC〉 → |2̃2〉
|3̃2TC〉 → |2̃2〉.

(Note that the states|1̃1TC〉 and |4̃1TC〉 are the same states simply labelled|1̃1〉 and |4̃1〉 in
equation (2.4).) We observe that this construction gives us a sum of Potts boundary states
in the 43 and 33 cases because the corresponding tetracritical Ising boundary states areZ2

invariant. We may remedy this situation by forming linear combinations of the projected
tetracritical boundary states with the twisted Ishibashi states:

|ψ̃〉 = ( 1
2)

1+ (−1)Q̂√
2
|4̃3TC〉 −N

√
3/2[|ψt 〉 + λ|σt 〉]

|ψ̃†〉 = ( 1
2)

1+ (−1)Q̂√
2
|4̃3TC〉 +N

√
3/2[|ψt 〉 + λ|σt 〉]

|σ̃ 〉 = ( 1
2)

1+ (−1)Q̂√
2
|3̃3TC〉 −N

√
3/2[λ2|ψt 〉 − λ−1|σt 〉]

|σ̃ †〉 = ( 1
2)

1+ (−1)Q̂√
2
|3̃3TC〉 +N

√
3/2[λ2|ψt 〉 − λ−1|σt 〉].

(2.22)

This construction is rather reminiscent of the one used to obtain orbifold boundary states
to describe a defect line in the Ising model [12] where it was also necessary to add
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a contribution from the twisted sector when the periodic boson boundary states were
invariant under theZ2 transformation. This is presumably an important element of a general
prescription for constructing boundary states for orbifold models.

3. The new boundary condition

The various partition functions involving the new b.c. are given below. Henceforth, to
simplify our notation, we will refer to the fixed b.c.’s asA, B andC (corresponding to the
three possible states of the Potts variable) the mixed b.c.’s asAB, AC, BC, the free b.c.
as ‘free’ and the new b.c. corresponding to the|2̃2〉 boundary state as ‘new’. (In [1] the
notation ‘A+ B ’ was used rather than ‘AB ’.)

Znew,A = Znew,B = Znew,C = χ22+ χ32 = Zfree,AB

Znew,AB = Znew,BC = Znew,AC = χ44+ χ42+ χ22+ χ32

Znew,free= χε + χσ + χσ † = ZAB,A + ZAB,B + ZAB,C
Znew,new= χI + χε + χσ + χσ † + χψ + χψ† = ZAB,AB + ZAB,BC + ZAB,AC.

(3.1)

Several clues to the nature of the new fixed point are provided by these partition functions.
The equality of the three partition functions on the first line of equation (3.1) and on the
second line strongly suggests that the new b.c. isZ3 invariant. This is also probably implied
by the fact that their is only one new b.c., and not three. In general, the diagonal partition
functions, Zαα give the boundary operator content with b.c.α, with the usual relation
between the finite-size energies and the scaling dimensions of operators. This in turn gives
information about the renormalization group stability of the boundary fixed point. We give
all diagonal partition functions below:

ZAA = χI
ZAB,AB = χI + χε
Zfree,free= χI + χψ + χψ†
Znew,new= χI + χε + χσ + χσ † + χψ + χψ† .

(3.2)

We see that the fixed boundary fixed point is completely stable. Apart from the identity
operator it only contains operators of dimensions> 2. The mixed fixed point has one
relevant operator of dimension25 while the free fixed point has two relevant operators, both
of dimension2

3. It is easy to see, on physical grounds, what these operators are. Consider
adding a boundary ‘magnetic field’ to the free b.c.:

βH → βH −
′∑
j

[heiθj + c.c.]. (3.3)

Here the sum runs over the spins on the boundary only.h is a complex field and c.c. denotes
complex conjugate. The two relevant operators at the free fixed point correspond to the real
and imaginary parts ofh. If we assume that|h| renormalizes to∞ then it would enforce
a fixed b.c. for generic values of arg(h). For instance, a real positiveh picks outθj = 0.
There are three special directions, arg(h) = π , ±π/3 for which two of the Potts states
remain degenerate. For instance, forh real and negative,θ = ±2π/3. These values of
Im(h) are invariant under renormalization owing to aZ2 symmetry. We expect the system
to renormalize to the mixed fixed point for these values of arg(h). Im(h) corresponds to
the single relevant coupling constant at the mixed fixed point with Im(h) = 0. Giving h
a small imaginary part at this fixed point will select one of the two Potts states 2π/3 or
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−2π/3, corresponding to a renormalization group flow from mixed to fixed. Since the free
fixed point hasZ3 symmetry we can classify the relevant operators by theirZ3 charge. The
two operators at the free fixed point, e±iθj , have charge±1, corresponding toψ andψ†.

We see from equation (3.2) that there are five relevant operators at the new fixed point.
Two with charge 1, two with charge−1 and one with charge 0. The charged operators
presumably arise from applying a magnetic field. However, even if we preserve theZ3

symmetry, there still remains one relevant operator,ε of dimension 2
5. Thus, we might

expect the new fixed point to be unstable, even in the presence ofZ3 symmetry, with a
renormalization group flow to the free fixed point occurring.

It turns out that there is a simple physical picture of the new b.c. within the quantum
Potts chain realization. The corresponding classical model can also be constructed but
involves negative Boltzmann weights. Therefore we first discuss the quantum model and
turn to the classical model at the end.

We now consider the quantum chain model on a finite interval, 06 i 6 l. In order to
explore theZ3 symmetric part of the phase diagram it is convenient to consider the model
with a complex transverse field,hT at the origin and a free b.c. atl:

H = −(hTM0+ h∗TM†0)−
l∑
i=1

[(Mi +M†i )+ (R†i Ri−1+ R†i−1Ri)]. (3.4)

We can effectively map out the phase diagram by considering the duality transformation of
equation (1.5). The dual lattice consists of the pointsi + 1

2 for i = 0, 1, . . . l. Note that,
from equation (1.5):

R′1
2

≡ M0. (3.5)

The exactly transformed Hamiltonian is:

H = −(hT R′ 1
2
+ h∗T R′†1

2

)−
l∑
i=0

(R′†
i+ 1

2

R′
i− 1

2

+ h.c.)−
l−1∑
i=0

M ′
i+ 1

2

. (3.6)

We have a longitudinal field at site12, as well as a transverse field. Also note that, at the
last site,l + 1

2 there is no field of either kind.
First consider the case wherehT is real and positive, for example,hT = 1 corresponding

to standard free b.c.’s. The dual model has the longitudinal field term at1
2:

−hT
(−1 0 0

0 −1 0
0 0 2

)
(3.7)

which favours the third (C) Potts state. We expect this Hamiltonian to renormalize to the
fixed (C) b.c. The spin at sitel+ 1

2 cannot flip. We may fix it in theA, B or C state. This
corresponds to a sum of three fixed b.c.’sA, B or C. From the dual viewpoint the partition
function at low energies is

ZC,A + ZC,B + ZC,C = χI + χψ + χψ† = Zfree,free. (3.8)

This is obviously the correct answer whenhT = 1 and is a useful check on duality. It
implies that the dual of free is fixed. Now consider the case wherehT is real and negative.
The dual model has a longitudinal field which favours statesA andB equally. It should
flow to the mixed b.c.AB. Thus the partition function is:

ZAB,A + ZAB,B + ZAB,C = χε + χσ + χσ † . (3.9)
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We see from equation (3.1) that this isZnew,free. This indicates that we obtain the new
b.c. by reversing the sign of the transverse field at the boundary. We see that the dual of
mixed is new. This is consistent withZnew,new in equation (3.1). This newBC is stable
provided thathT is real and negative. There is a discrete symmetry associated withhT
being real, time reversal. Now let us break this symmetry and givehT a small imaginary
part, hT → hT + ih′T . Note that we have not broken theZ3 symmetry (in the original
formulation). In the dual picture the longitudinal field at site1

2 is:hT +
√

3h′T 0 0
0 hT −

√
3h′T 0

0 0 −2hT

 . (3.10)

For hT > 0 and smallh′T theC state is still favoured, but forhT < 0 theh′T term breaks
the degeneracy betweenA andB. We then obtain a flow from mixed (AB) to fixed (A
or B) in the dual picture. In the original formulation we obtain a flow from new to free.
In either picture, the flow is driven by anx = 2

5 boundary operator. This explains theZ3

symmetric relevant operator at the new fixed point that we were discussing. Importantly
there is a different symmetry, time reversal, which forbids it. In the complexh-plane the
phase diagram can be easily constructed. There are three completely stable free fixed points
(in the original formulation) at equal distances from the origin on the positive real axis
and at angles±2π/3. There are three new fixed points at equal distances from the origin
on the negative real axis and at angles±π/3. These are attractive for flows along rays
from the origin but repulsive for flows perpendicular to these rays. One can easily connect
up these critical points and draw sensible looking flows for the whole complex plane, as
shown in figure 1. Although three ‘free’ fixed points occur in this phase diagram, they all
correspond to the same boundary state. In fact, arg(hT ) can be rotated by 2π/3 by a unitary
transformation at site 0 by the matrixR0. Thus the three finite-size ground states (and all
excited states) forhT at the three ‘free’ fixed point values, are rigorously identical except
for a local change at site 0. The spectra, with any given b.c. atl is the same in all three
cases. Clearly all three cases have the same long distance, low-energy properties and should
thus be thought of as corresponding to the same fixed point. Similarly all three ‘new’ fixed
points are equivalent. It might, in fact, be more appropriate to draw the new fixed point

Figure 1. Schematic phase diagram of the quantum chain version of the Potts model with a
complex boundary transverse field. Arrows indicate direction of renormalization group flows as
the energy scale is decreased.
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at |hT | = ∞ rather than at a finite distance from the origin, as in figure 1. This follows
since, in the dual picture, we obtain the mixed b.c. by eliminating one of the classical Potts
states and hence taking the longitudinal field to∞. An infinite real negative transverse field
eliminates the symmetric state (1,1,1) at the first site and projects onto the two orthogonal
states with basis(1, ei2π/3, e−i2π/3), (1, e−i2π/3, ei2π/3).

The origin, hT = 0, corresponds to a sum ofA, B andC boundary conditions. We
may specify a value for the Potts variable at 0 and it is unchanged by the action of the
Hamiltonian. The Hilbert space breaks up into three sectors depending on which value is
chosen. One way of checking the consistency of this is the duality transformation. For
hT = 0 the dual model still has a transverse field at site1

2 but no longitudinal field. Thus
it corresponds to a free b.c. However, in the dual model the b.c. atl+ 1

2 is a sum ofA, B,
andC b.c.’s. Thus we obtain the same partition function from either picture

Zfree,A + Zfree,B + Zfree,C.

The set of boundary operators athT = 0, is given by the finite-size spectrum with a
sum of A, B and C boundary conditions at each end of the system. This gives the partition
function:

Z = 3(ZA,A + ZA,B + ZA,C) = 3(χI + χψ + χψ†). (3.11)

Note that there are three zero-dimensional boundary operators forhT = 0. One is the
identity. The other two correspond to a longitudinal fieldhLR0 + h∗LR†0. This should pick
out one of the three b.c.’sA, B or C (for generic phases ofhL). 〈R0〉 takes on a finite
value for infinitesimalhL corresponding to a 1st order transition. This becomes especially
obvious by again using duality but now running the argument backwards. That is, let us
now study the dual model with 0 transverse field and a small non-zero longitudinal field,
hL. This corresponds to the original model with a transverse fieldhLM0 + h.c. but zero
classical Potts interactionR†0R1 + h.c. Clearly, hL produces a first-order transition in this
model since the first site is exactly decoupled. We can diagonalizeM0 and 1 or the other
of the three eigenstates will be the ground state depending on the phase ofhL (for generic
values of this phase). In the dual model this corresponds to first-order transitions between
eigenstates ofR 1

2
when a longitudinal field is turned on (with a non-zero classical Potts

interaction of order 1). It is also clear that there are special values for the phase ofhL for
which two ground states remain degenerate so another first-order transition occurs, across
the negative realhL axis (and the two other axes rotated by±2π/3).

From equation (3.11), there are six relevant boundary operators of dimension2
3 at the

hT = 0 fixed point. We may identify these with these with the six tunneling processes
A → B, B → A, etc. ImposingZ3 symmetry, no dimension 0 operators and only two-
dimension2

3 operators are allowed. The latter couple to the complex transverse field,hT .
Thus we see that the flow away fromhT = 0 to the new or free fixed points is driven by
x = 2

3 operators.
Further insight into the nature of the new fixed point can be gained by considering

again the model with no classical Potts interaction between sites 0 and 1,hT 6= 0 and no
longitudinal field. Thus we have a Potts chain with a free b.c. at one and an additional
decoupled Potts spin at 0. For real positivehT , the decoupled Potts spin has a unique
symmetric ground state, (1,1,1). In this case, we expect that turning on the classical Potts
interaction with the first site leads to the free fixed point. The end spin is simply adsorbed,
with a flow from free to free. On the other hand, for real and negativehT , the ground
state of the decoupled spin at 0 is two-fold degenerate. These two states can be chosen
to be (1, e2π i/3, e−2π i/3) and (1, e−2π i/3, e2π i/3). Turning on the classical Potts interaction
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should now produce a flow to the new fixed point from the above discussion. Thus we
obtain a flow from a free b.c. with a decoupled system with a two-fold degeneracy, to
the new b.c. This is somewhat like the renormalization group flow in theS = 1

2 Kondo
problem, with the two states of the decoupled spin in the Potts model corresponding to
spin up or down in the Kondo model. The flow to the new fixed point is analogous to
Kondo-screening of the impurity. A related problem, an impurity with triangular symmetry
coupled to conduction electrons, was discussed in [13]. The two-fold degeneracy of the
ground states of the impurity is guaranteed by theZ3 symmetry (for the appropriate sign
of the tunneling term) and can lead to two-channel Kondo behaviour (when electron spin
is taken into account) without the fine-tuning necessary for ordinary two-level impurities.
We note that both of these problems correspond to aZ3 symmetric impurity coupled to a
dissipative environment. In [13] this environment is the conduction electrons; in our model
it is the rest of the Potts chain.

The dual version of this last renormalization group flow is easily constructed. At site1
2

there is originally a longitudinal field but no transverse field. Thus the system is in a sum
of two states,A+ B. Upon turning on the transverse field we expect a flow to the mixed
stateAB.

Now let us consider the classical Potts model of equation (1.1). We may again construct
the new boundary fixed point using duality. The first step is to Fourier transform the factor
associated with each link,ij in the partition sum. Thus we introduce a new angular variable,
φij , taking on values 0,±2π/3 associated with the linkij by:

eJ cos(θi−θj ) =
∑
φij

ei3φij (θi−θj )/2πAeK cos(φij ) (3.12)

whereA is a normalization constant. We now sum over the original Potts variables,θi .
Ignoring the boundaries, for the moment, the sum over the Potts variable at each site gives
a constraint on the four link variables associated with the links terminating at the site. (See
figure 2.) ∑

±
(φi,i±x̂ + φi,i±ŷ ) = 0 (mod 2π) (3.13)

Figure 2. Site, link and dual lattice variables.
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whereφji ≡ −φij . We may solve these constraints by introducing new angular variables,
θ ′i (also restricted to the values 0,±2π/3) on the dual lattice, i.e. the centres of the squares
of the original lattice (see figure 2). Explicitly:

φi,i+ŷ = θ ′i+x̂/2+ŷ/2− θ ′i−x̂/2+ŷ/2
φi,i+x̂ = θ ′i+x̂/2−ŷ/2− θ ′i+x̂/2+ŷ/2.

(3.14)

The partition function is transformed into:

Z ∝
∏
i

∑
θ ′i

e
∑
〈i,j〉 K cos(θ ′i−θ ′j ). (3.15)

Thus we retreive the original Potts model with a dual coupling constant,K. The critical
coupling is given by the self-duality condition,J = K, which gives:

Jc = 2
3 ln(1+

√
3). (3.16)

Now consider the system with a free boundary along thex-axis with a boundary Potts
interactionJB (and no fields at the boundary). Consider summing over the Potts variable
θi at the boundary, as indicated in figure 3. This gives the constraint:

φi,i+ŷ + φi,i+x̂ + φi,i−x̂ = 0. (3.17)

Writing φi,i+ŷ in terms of the dual variables, this becomes:

θ ′i−x̂/2+ŷ/2− θ ′i+x̂/2+ŷ/2+ φi,i+x̂ + φi,i−x̂ = 0. (3.18)

We may solve this equation for all sites,i, along the boundary by:

φi,i+x̂ = θ ′i+x̂/2+ŷ/2. (3.19)

Thus the edge of the dual lattice is aty = 1
2. In addition to the bulk Potts interaction of

strengthK, given by equation (3.12), there is an additional classical boundary term in the
dual Hamiltonian:

−βHfield = h
∑
j

cosθ ′j,0, (3.20)

with the dual boundary field,h, determined by the boundary interaction:

eJB cos(θi−θi+x̂ ) =
∑
φi,i+x̂

ei3φi,i+x̂ (θi−θi+x̂)/2πCeh cos(φi,i+x̂ ) (3.21)

for some constant,C. This gives the condition:

e3JB/2 = eh + 2e−h/2

eh − e−h/2
. (3.22)

Figure 3. Boundary variables.
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This equation has the annoying feature that, for realJB andh, there are only solutions for
h andJB〉0, with h running from∞ to 0 asJB runs from 0 to∞. From our analysis of the
quantum model we expect that the new critical point occurs when the dual model has a real
negativeh. This requires a complexJB , Im(JB) = 2π/3. Noting that the ratio of Boltzmann
weights forθi − θi+x̂ = 0 or ±2π/3 is e3JB/2, we see that this implies real but negative
Boltzmann weights. In particular, we may regard the new fixed point as corresponding to
an infinite negativeh; this corresponds to

e3JB/2 = −2. (3.23)

In the quantum model, discussed above, this limit eliminates the symmetric state (1,1,1) on
the first site, projecting onto the two orthogonal states. The same projection is realized in
the standard transfer matrix formalism for the classical Potts model. The Potts model with
negative Boltzmann weights in the bulk occurs quite naturally in the cluster formulation
based on the high-temperature expansion [14].

We note that the values of the ‘ground state degeneracies’ of the various fixed points,
〈α|0, 0〉 are given by:

gA = N gAB = Nλ2 gfree= N
√

3 gnew= N
√

3λ2. (3.24)

Noting that

1< λ2 = 1+√5

2
<
√

3 (3.25)

we see that:

gA < gAB < gfree< gnew< 3gA < 2gfree. (3.26)

Thus all renormalization group flows that we have discussed are consistent with the ‘g-
theorem’ [15] (or ‘g-conjecture’ as it is more accurately referred to).g always decreases
under an renormalization group flow. We also note that the various flows which are related
by duality have the same ratios ofg-factors:

gnew

gfree
= gAB

gA
= λ2

3gA
gfree
= gfree

gA
=
√

3

3gA
gnew
= gfree

gAB
=
√

3

λ2

2gfree

gnew
= 2gA
gAB
= 2

λ2
.

(3.27)
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Appendix. g-theorem for fusion

At present, the most general and systematic method used to construct a new boundary state
is fusion. For rational CFTs (with a finite number of conformal towers), fusion is quite a
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powerful method. Empirically it has been recognized that fusion is a kind of irreversible
process: when a boundary stateB is obtained by fusion from another boundary stateA,
fusion onB does not generally giveA. (Although sometimes it does.) This irreversibility
reminds us of the ‘g-theorem’ which states that the ground-state degeneracyg of the system
always decreases along the boundary renormalization group flow [15]. Actually, here we
prove that the irreversibility of fusion is also related to the ground-state degeneracyg.
Amusingly, the ‘direction’ is opposite to that of the renormalization group flow. We state
the following.

Theorem.We consider a unitary rational CFT. LetB be a boundary state obtained by fusion
from the boundary stateA. The ground-state degeneracy ofB is always greater than or
equal to that ofA.

Proof. To prove the theorem, first let us give the definition of the ground-state degeneracy.
Given a boundary state|X〉, the ground-state degeneracy of the stategX is given by the
following

gX = 〈0|X〉 (A.1)

where|0〉 is the ground state of the system and we choose the overall phase of|X〉 so that
gX is positive. For unitary CFTs, the ground state corresponds to the identity operator with
conformal weight 0. We primarily denote this identity as 0. The definition of equation (A.1)
follows from the fact that the partition function is proportional to this matrix element in the
limit of an infinite length system.

On the other hand, a general relation for fusion [1, 15] reads:

〈a|B〉 = 〈a|A〉S
a
c

Sa0
(A.2)

wherea represents an aribitrary primary field,c is the primary used for fusion fromA to
B, andSxy is the modularS-matrix element for primariesx andy. The special casea = 0
(identity) gives the relation between the degeneracies:

gB

gA
= S0

c

S0
0

. (A.3)

Now we employ the Verlinde formula [8, 1]:∑
b

SabN
b
cd =

Sac S
a
d

Sa0
. (A.4)

The special casea = 0 andd = c′ (c′ is the conjugate ofc), combined with equation (A.3)
gives ∣∣∣∣gBgA

∣∣∣∣2 = 1

S0
0

∑
b

S0
bN

b
c′c

= 1+
∑
b 6=0

S0
b

S0
0

Nb
c′c (A.5)

where we used the fact that the operator product expansion betweenc and its conjugatec′

always contains the identity operator.
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Since the fusion rule coefficientsNb
cc are non-negative integers, the theorem follows if

S0
b/S

0
0 > 0. Actually, it is known thatS0

b > 0 for any primaryb, proved as follows [10].
Consider the characterχb(q̃). By modular transformation,

χb(q̃) =
∑
e

Sebχe(q). (A.6)

When evaluating the limitq → 0, the right-hand side is dominated by the lowest power of
q. Thusχb(q̃) ∼ S0

bq
−c/24. (Herec in the exponent is the central charge of the CFT.) Since

the left-hand side andq−c/24 are both positive,S0
b > 0. Thus the theorem is proved. �

Our theorem is of course consistent with all known cases, including boundary states
of the Ising and Potts models. When there is a renormalization group flow between two
boundary states, our theorem implies that the direction of the fusion rule construction is
opposite. Namely, we can obtain an unstable boundary state from a more stable boundary
state, but the reverse is not possible. However, there can be an exception: if there are some
extra degrees of freedom, the renormalization group flow can be in the same direction as
the fusion. An example of this is the Kondo effect; the screened state, which has larger
ground-state degeneracy than the original state, is constructed by fusion. However, if we
take the degeneracy owing to the impurity spin into account, the total degeneracy is smaller
in the screened state. Thus the renormalization group flow occurs from the unscreened to
screened state.

That fusion generates rather opposite ‘flow’ to the renormalization group one which
makes it somewhat difficult to understand the physical meaning of fusion, which is a more
or less abstract mathematical manipulation. Perhaps the best intuition is gained again from
the example of the Kondo effect. Namely, fusion roughly corresponds to an absorption of
some degree of freedom by the boundary. Considering the generality of this result, it is
tempting to imagine some deeper connection with the ‘g-theorem’ on the renormalization
group flow.
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